Anders Hofer - Associate Professor

Nucleotide biosynthesis in the parasite Typanosoma brucei

African sleeping sickness is caused by Trypanosoma brucei. We study nucleotide metabolism in this parasite, mammalian cells and other species.

We are studying nucleotide metabolism in vitro and in vivo by studying isolated enzymes (e.g. ribonucleotide reductase and nucleoside kinases) and by analyzing intracellular nucleotide pools in wild-type and knockdown cells exposed to nucleosides and/or drugs. The knowledge and understanding of basal cellular nucleotide metabolism processes obtained from these studies will help us and others to design drugs that exploit differences in these enzymes and pathways to selectively kill malignant cells and pathogens (e.g. Trypanosoma brucei).

Enzyme regulation/oligomerization: Nucleotides are used as energy carriers, phosphate donors, cellular regulators, and building blocks for DNA and RNA synthesis. Nucleotides can be produced by de novo and salvage pathways and some of the enzymes involved (e.g. ribonucleotide reductase) are allosterically regulated by nucleotide-dependent protein oligomerization. Our lab is particularly interested in such enzymes, which we investigate by complementary enzyme activity assays and direct protein oligomer mass measurement techniques such as Gas-phase Electrophoretic Mobility Macromolecule Analysis (GEMMA).

Drug discovery: Substrate analogs of nucleotide metabolizing enzymes can be used against diseases such as cancer and infectious diseases. We are studying the nucleotide metabolism of the parasite Trypanosoma brucei, which causes African sleeping sickness in humans and Nagana in domestic animals. The different properties of T. brucei nucleotide metabolism in comparison to that of the host can be exploited to find drugs that specifically target the parasite.

Active research projects:

  • Mammalian ribonucleotide reductase is composed of alpha and beta subunits and is regulated by two allosteric sites located on the alpha subunit. One of these sites, the overall activity site, binds ATP or dATP. We have previously seen that dATP (enzyme inhibitor) and ATP (activator) induce the formation of an alpha-6-beta-2 protein complex. The type of protein complex varies between species and we are now trying to delineate the molecular mechanism responsible for the opposite effects these two nucleotides have on enzyme activity in mammalian cells and other species.
  • T. brucei is able to accumulate unusually high levels of dATP when it is cultivated in the presence of deoxyadenosine. This strong salvage capacity can be utilized to activate nucleoside analogs that can be used as drugs against T. brucei. We characterize enzymes that are involved in the metabolism of deoxyadenosine and other nucleosides in T. brucei and exploit the unique features of these enzymes for drug discovery against the parasite.

Publications

Author

Title

Year sorteringsordning

Fulltext

Kamte, Stephane L. Ngahang
Ranjbarian, Farahnaz
Campagnaro, Gustavo Daniel; et al.

Trypanosoma brucei Inhibition by Essential Oils from Medicinal and Aromatic Plants Traditionally Used in Cameroon (Azadirachta indica, Aframomum melegueta, Aframomum daniellii, Clausena anisata, Dichrostachys cinerea and Echinops giganteus)
International Journal of Environmental Research and Public Health, 14(7)

2017

-

Ranjbarian, Farahnaz
Vodnala, Munender
Alzahrani, Khalid J. H.; et al.

9-(2 '-Deoxy-2 '-Fluoro-beta-D-Arabinofuranosyl) Adenine Is a Potent Antitrypanosomal Adenosine Analogue That Circumvents Transport-Related Drug Resistance
Antimicrobial Agents and Chemotherapy, 61(6)

2017

-

Petrelli, Riccardo
Ranjbarian, Farahnaz
Dall'Acqua, Stefano; et al.

An overlooked horticultural crop, Smyrnium olusatrum, as a potential source of compounds effective against African trypanosomiasis
Parasitology international, 66(2): 146-151

2017

-

Gupta, Arun
Reinartz, Ines
Spilotros, Alessandro; et al.

Global Disordering in Stereo-Specific Protein Association
Biophysical Journal, 112(3): 33A-33A

2017

-

Bugaytsova, Jeanna A.
Björnham, Oscar
Chernov, Yevgen A.; et al.

Helicobacter pylori Adapts to Chronic Infection and Gastric Disease via pH-Responsive BabA-Mediated Adherence
Cell Host and Microbe, 21(3): 376-389

2017

-

Johansson, Renzo
Jonna, Venkateswara Rao
Kumar, Rohit; et al.

Structural Mechanism of Allosteric Activity Regulation in a Ribonucleotide Reductase with Double ATP Cones
Structure, 24(6): 906-917

2016

-

Sadanandan, Sajna Anand
Ekström, Jens-Ola
Jonna, Venkateswara Rao; et al.

VP3 is crucial for the stability of Nora virus virions
Virus Research, 223: 20-27

2016

-

Crona, Mikael
Codo, Paula
Jonna, Venkateswara Rao; et al.

A ribonucleotide reductase inhibitor with deoxyribonucleoside-reversible cytotoxicity
Molecular Oncology, 10(9): 1375-1386

2016

-

Petrelli, Riccardo
Orsomando, Giuseppe
Sorci, Leonardo; et al.

Biological Activities of the Essential Oil from Erigeron floribundus
Molecules, 21(8)

2016

Download

Vodnala, Munender
Ranjbarian, Farahnaz
Pavlova, Anna; et al.

Trypanosoma brucei Methylthioadenosine Phosphorylase Protects the Parasite from the Antitrypanosomal Effect of Deoxyadenosine: IMPLICATIONS FOR THE PHARMACOLOGY OF ADENOSINE ANTIMETABOLITES
Journal of Biological Chemistry, 291(22): 11717-11726

2016

-


Page Editor: Anders Hofer

Print page

hofer_img1

Contact Information

Umeå University
Medical Biochemistry and Biophysics
SE-901 87 Umeå, SWEDEN 

Visiting Address
KBC-building, 6th floor

Tel:  +46 70 2974096

Fax:  +46 90 786 9795

Contact Form